# Definition of Intelligence with Linear Orders for Ontologies

Francisco J. Arjonilla

Yuichi Kobayashi

Graduate School of Science and Technology, Shizuoka University, Japan

WOSRA (IROS 2018)

5th of October, 2018

#### Introduction

- Ontologies of intelligence is a topic that has scarcely been tackled. [e.g. Flynn 1987]
- Despite its broad usage nowadays.
  - Human and animal intelligence
  - Artificial Intelligence
  - Smartphone
- The science of intelligence will remain difficult without an ontology of intelligence.
- We need a consensus.

## Definitions of Intelligence

- The first step is to define intelligence.
  - General definitions: Too ambiguous and subjective.
    E.g. "Intelligence measures an agent's ability to achieve goals in a wide range of environments." [Legg & Hutter 2007]
  - 2. Formal definitions: Limited to a restricted set of capabilities. E.g. "Intelligence is the ability measured by the IQ test, known as the g factor." [Sternberg 1977]
    - Human definitions rely on IQ tests.
    - Machine definitions rely on Fitness Functions.
    - → Formal definitions of intelligence define a linear order on the test subjects.

# Measuring Intelligence

- Formal definitions of intelligence measure the degree of accomplishment of a given objective.
- The objective is defined implicitly in the IQ test / fitness function.



## Measuring Intelligence

- Formal definitions of intelligence measure the degree of accomplishment of a given objective.
- The objective is defined implicitly in the IQ test / fitness function.



2 IQ tests / Fitness Functions combined

# Measuring Intelligence

- Formal definitions of intelligence measure the degree of accomplishment of a given objective.
- The objective is defined implicitly in the IQ test / fitness function.



2 IQ tests / Fitness Functions combined



Ordered Vector Spaces

#### Discussion

- Subjects are incomparable unless they are compared against a single definition of intelligence.
- Many definitions of intelligence must be summarized to a single one to allow comparisons:
  - E.g. "Capability of performing well at task A and B."
  - E.g. "Capability of performing well at task A or B."
- · We need as many definitions of intelligence as possible objectives.

#### Conclusions

- The definition of Intelligence is strongly connected to objectives.
- Defining intelligence is equivalent to defining an objective.
- The ontology of intelligence is equivalent to the ontology of objectives.

# Definition of Intelligence with Linear Orders for Ontologies

Francisco J. Arjonilla

Yuichi Kobayashi

Graduate School Of Science And Technology, Shizuoka University, Japan

Muchas gracias por su atención

#### References

- Flynn, J. R. (1987). The Ontology of Intelligence. In Measurement, Realism and Objectivity SE - 1 (Vol. 5, pp. 1–40). Dordrecht: Springer Netherlands.
- Insa Cabrera, J. (2016, May 16). Towards a Universal Test of Social Intelligence. Universitat Politècnica de València, Valencia (Spain).
- Legg, S., & Hutter, M. (2007). Universal Intelligence: A Definition of Machine Intelligence. Minds and Machines, 17(4), 391–444. Artificial Intelligence.
- Sternberg, R. J. (1977). Intelligence, Information Processing, and Analogical Reasoning. John Wiley & Sons, Ltd.